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The low-energy spectrum of graphene nanoribbons with armchair edges �armchair nanoribbons� is described
as the superposition of two nonequivalent Dirac points of graphene. In spite of the lack of well-separated two
valley structures, the single-channel transport subjected to long-ranged impurities is nearly perfectly conduct-
ing, where the backward-scattering matrix elements in the lowest order vanish as a manifestation of internal
phase structures of the wave function. For multichannel energy regime, however, the conventional exponential
decay of the averaged conductance occurs. Since the intervalley scattering is not completely absent, armchair
nanoribbons can be classified into orthogonal universality class irrespective of the range of impurities. The
nearly perfect single-channel conduction dominates the low-energy electronic transport in rather narrow
nanorribbons.
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I. INTRODUCTION

Graphene is the first true two-dimensional �2D� material.1

Due to the honeycomb lattice structure of sp2 carbon, the �
electronic states near the Fermi energy behave as the mass-
less Dirac fermions. This leads to many nontrivial properties
of graphene such as the half-integer quantum Hall effect.2

The valence and conduction bands touch conically at two
nonequivalent Dirac points called K+ and K− points, which
possess opposite chirality.3 In graphene, the presence of
edges can have strong implications for the electronic band
structure of � electrons.4–6 Graphene nanoribbons �GNRs�
with zigzag edges are known to have partial flat bands near
the Fermi energy due to the edge localized states. The elec-
tronic structures of nanoribbons with armchair edges cru-
cially depend on the ribbon width.4–7 Recent rapid progress
of experiments confirmed the edge-dependent electronic
states of graphene using scanning tunneling microscope8,9

and also succeeded in creating GNR using lithographic10 or
chemical techniques.11

GNR displays unusual electronic transport properties, in
apparent conflict with the common belief that one-
dimensional �1D� systems are generally subject to Anderson
localization. Indeed it was demonstrated that nanoribbons
with zigzag edges �zigzag nanoribbons� with long-ranged
impurities �LRIs� possess one perfectly conducting channel
�PCC�, i.e., the absence of Anderson localization.12,13 Since
in zigzag nanoribbons the propagating modes in each valley
contain a single chiral mode originating from edge states, a
single PCC emerges associated with such a chiral mode, if
the impurity scattering does not connect the two valleys, i.e.,
for LRI.

In this paper, we show that the single-channel transport in
the disordered armchair nanoribbons subjected to the long-
ranged impurities is nearly perfectly conducting in spite of
the lack of well-separated two valley structures. The origin
of the nearly perfect conduction is the cancellation of the
backward-scattering matrix elements in the lowest order due
to the manifestation of internal phase structures of the wave
function. For multichannel energy regime, however, the con-

ventional exponential decay of the averaged conductance oc-
curs. Since the intervalley scattering is not completely ab-
sent, the disordered armchair nanoribbons can be classified
into orthogonal class. The nearly perfectly conducting effect
dominates the low-energy electronic transport properties in
rather narrow nanorribbons.

The paper is organized as follows: In Sec. II, the tight-
binding model used in our numerical simulation is explained.
We also briefly review the electronic states of the low-energy
single-channel mode in armchair nanoribbons by k ·p
scheme. In Sec. III, we present the numerical results indicat-
ing the nearly perfect single-channel conduction. This prop-
erty is then explained by T-matrix analysis. Symmetry con-
sideration is also given in this section. Finally we summarize
our work in Sec. IV.

II. ELECTRONIC STATES OF ARMCHAIR NANORIBBONS

A. Tight-binding model

We describe the electronic states of graphene nanoribbons
with armchair edges by the tight-binding model,

H = �
�i,j�

�ijci
†cj + �

i

Vici
†ci, �1�

where ci�ci
†� denotes the creation �annihilation� operator of

an � electron on the site i neglecting the spin degree of
freedom. �ij =−1 if i and j are nearest neighbors, and 0 oth-
erwise. In the following we will also apply magnetic fields
perpendicular to the graphite plane which are incorporated
via the Peierls phase �ij→�ij exp�i2��e /ch��i

jdl ·A�, where
A is the vector potential. The second term in Eq. �1� repre-
sents the impurity potential Vi=V�ri� at position ri.

In Fig. 1�a�, the schematic figure of armchair ribbons is
depicted. The ribbon width N is defined by the number of
zigzag kinks in the transverse direction. The armchair ribbon
can be metallic if N=3m−1 �m: integer number� as shown in
Fig. 1�b�, otherwise semiconducting. The disordered sample
region with the length L is attached to two reservoirs via
semi-infinite ideal regions.
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We assume that impurities are randomly distributed with
density nimp. Each impurity potential has the Gaussian form
of range d,

Vi = V�ri� = �
r0�random�

u exp	−

ri − r0
2

d2 � , �2�

where the strength u is uniformly distributed within the range

u
�uM. Here uM satisfies the normalization condition:
uM�ri

�fullspace�exp�−ri
2 /d2� / ��3 /2�=u0. In this work, we set

nimp=0.1, u0=1.0, and d /a=1.5 for LRI and d /a=0.1 for
short-ranged impurities �SRIs�.

B. Low-energy single-channel mode

Here we briefly review the relation between the low-
energy electronic states of armchair nanoribbons and the
Dirac spectrum of graphene. The electronic states near the
Dirac point in graphene can be described by the massless
Dirac Hamiltonian,

Ĥ0 = �̃�k̂x��x
� �0� − k̂y��y

� �z�� , �3�

acting on the four-component pseudospinor envelope func-
tions F�r�= �FA

+�r� ,FB
+�r� ,FA

−�r� ,FB
−�r��, which characterize

the wave functions on the two crystalline sublattices �A and
B� for the two nonequivalent Dirac points �valleys� K�

shown in Fig. 1�c�.The corresponding wave vector for the K+
point is K= �2� /a��2 /3,0� and that for the K− point is −K.
We have defined the amplitude of wave function at RA and
that at RB as �A�RA�=eiK·RAFA

+�RA�+e−iK·RAFA
−�RA� and

�B�RB�=eiK·RBFB
+�RB�−e−iK·RBFB

−�RB�, respectively. Here,
RA�RB� is the coordinate of an arbitrary A�B� sublattice site.

Here �̃ is the band parameter, k̂x�k̂y� are wave-number opera-

tors, and �0 is the 2	2 identity matrix. Pauli matrices �x,y,z

act on the sublattice space �A and B�, while �x,y,z on the
valley space �K��. The boundary condition for armchair
nanoribbons14 can be written as

�FA
+�x,y� + FA

−�x,y��
x=0,W = 0, �4�

�FB
+�x,y� − FB

−�x,y��
x=0,W = 0. �5�

Since this boundary condition projects K+ and K− states into

 point in the first Brillouin zone as seen in Fig. 1�c�, the
low-energy states for armchair nanoribbons are the superpo-
sition of K+ and K− states. If the ribbon width W satisfies the
condition of W= �3 /2��Nw+1�a with Nw=0,1 ,2 , . . ., the sys-
tem becomes metallic with the linear spectrum. The corre-
sponding energy is given by

�n,k,s = s�̃��n
2 + k2, �6�

where �n= 2�n
3�Nw+1�a , n=0, �1, �2, . . ., and s=�. The n=0

mode is the lowest linear subband for metallic armchair rib-
bons. The energy gap �s� to first parabolic subband of n
=1 is given as

s = 4��̃/3�Nw + 1�a , �7�

which is inversely proportional to ribbon width. It should be
noted that small energy gap can be acquired due to the
Peierls distortion for half-filling at low temperatures,7,15 but
such effect is not relevant for single-channel transport in the
doped energy regime.

III. ELECTRONIC TRANSPORT PROPERTIES OF
DISORDERED NANORIBBONS

A. Numerical simulation

Now we turn to the discussion of the electronic transport
properties of disordered nanoribbons. We evaluate the di-
mensionless conductance by using the Landauer formula
g�E�=Tr�t†t�. Here the transmission matrix t�E� for disor-
dered system is calculated by using the recursive Green’s
function method.16

Figure 2�a� shows the averaged conductance �g� as a
function of the ribbon length L in the presence of LRI for
several different Fermi energies E. As we can clearly see, the
averaged conductance subjected to LRI in the single-channel
transport �E=0.1, 0.2, and 0.3� is nearly equal to one even in
the long wire regime. This result is contrary to our expecta-
tion that electrons are scattered even by LRI, since wave
functions at K+ and K− points are mixed in armchair ribbons.
For multichannel transport �E�0.4�, the conductance shows
a conventional decay. The robustness of single-channel trans-
port can be clearly viewed from the Fermi energy depen-
dence of conductance for several different ribbon lengths L
as shown in Fig. 2�b�. It should be noted that the energy
dependence in the vicinity of E=0 is quite different from that
in zigzag nanoribbons. The conductance decays rapidly due
to the finite ribbon width effect in zigzag ribbons,12 while the
conductance around E=0 remains unity in armchair ribbons
�Fig. 2�b��.
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FIG. 1. �Color online� �a� Structure of graphene armchair nan-
oribbon. The area with the length L represents the disordered region
with randomly distributed impurities. �b� Energy dispersion of arm-
chair ribbon with N=14. The energy range for single-channel trans-
port is described by s. �c� First Brillouin zone of graphene.
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Now let us see the effect of SRIs. Figure 2�c� shows the
average conductance �g� as a function of the ribbon length L
in the presence of SRI for several different Fermi energies E.
In this case, the conductance decays exponentially even for
single-channel transport. This result is similar to that previ-
ously obtained in zigzag ribbons. However, the rate of decay
in the low-energy single-channel regime �E=0.1 and 0.2� is
slower than that for multichannel transport regime �E�0.4�
in this case. Although the electronic conduction of disordered
armchair nanoribbons was studied by several authors,17 the
peculiar single-channel conduction and its origin were not
cleared so far.

B. T-matrix analysis

The absence of localization in the single-channel region
can be understood from the Dirac equation including the

impurity potential term Ûimp with armchair edge boundary.
To consider the amplitude of backward scattering, we present
the T-matrix defined as

T = Ûimp + Ûimp
1

E − Ĥ0

Ûimp + ¯ . �8�

According to Ref. 18, Ûimp is written as

Ûimp =
uA�r� 0 uA��r� 0

0 uB�r� 0 − uB��r�
uA��r�� 0 uA�r� 0

0 − uB��r�� 0 uB�r�
� , �9�

with

uX�r� = �
RX

g�r − RX�ũX�RX� , �10�

uX��r� = �
RX

g�r − RX�e−i2K·RXũX�RX� , �11�

where ũX�RX� is the local potential due to impurities for X
=A or B. Here g�R� with the normalization condition of
�Rg�R�=1 is the real function which has an appreciable am-
plitude in the region where 
R
 is smaller than a few times of

the lattice constant and decays rapidly with increasing 
R
. If
only the LRI is present, we can approximate uA�r�=uB�r�
�u�r� and uA��r�=uB��r��u��r�. In the case of carbon nano-
tubes and zigzag nanoribbons, uX��r� vanishes after the sum-
mation over RX in Eq. �11� since the phase factor e−i2K·RX

strongly oscillates in the x direction. However, this cancella-
tion is not complete in an armchair nanoribbon because the
averaging over the x direction is restricted to the finite width
of W. This means that we cannot neglect the contribution
from scatterers particularly in the vicinity of the edges to
uX��r�. Although uX��r� becomes small after the summation,
the symmetry of system changes for uX��r��0 as we will see
in Sec. III C.

Now we evaluate the matrix elements of Ûimp for the
eigenstate 
n ,k ,s� with the eigenenergy of Eq. �6� which can
be written as


n,k,s� =
1

�4WL 	 s

e−i��n,k� �ei�nx

	 − s

e−i��n,k� �e−i�nx�eiky , �12�

with the phase factor

e−i��n,k� =
�n − ik

��n
2 + k2

. �13�

Here it should be noted that the phase structure in Eq. �12� is
different between K+ and K− states, and this internal phase
structures are critical for the scattering matrix elements of
armchair nanoribbons as we discuss in the following. Using
the above expression, we can obtain the scattering matrix
element,

�n,k,s
Ûimp
n�,k�,s�� = �ss� + ei���n,k�−��n�,k����V�n,k;n�,k�� ,

�14�

with
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FIG. 2. �Color online� �a� Average conductance �g� as a function of the ribbon length L in the presence of LRIs for several different Fermi
energies E. Conductance is almost unaffected by impurities for single-channel transport �E=0.1, 0.2, and 0.3� while it shows a conventional
exponential decay for multichannel transport �E�0.4�. Here, N=14, nimp=0.1, and d /a=1.5. Ensemble average is taken over 104 samples.
�b� The Fermi energy dependence of �g� for LRI. �c� The same as �a� for SRI. Here, N=14, nimp=0.1, and d /a=0.1.
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V�n,k;n�,k�� =
1

4WL
�

0

W

dx�
0

L

dye−i�k−k��y

	�u�r��e−i��n−�n��x + c.c.� − �u��r�e−i��n+�n��x

+ c.c.�� . �15�

It should be emphasized that Eq. �14� has the same form as
that obtained for carbon nanotubes without intervalley scat-
tering �uX��r�=0�.18 Interestingly, in spite of the fact that arm-
chair nanoribbons inevitably suffer from the intervalley scat-
tering due to the armchair edges �uX��r��0�, we can express
the matrix element for the backward scattering as Eq. �14� by
including uX��r� into V�n ,k ;n� ,k�� in Eq. �15�. This is due to
the different phase structure between K+ and K− in Eq. �12�.

We focus on the single-channel regime where only the
lowest subband with n=0 crosses the Fermi level. From Eq.
�14�, the scattering amplitude from the propagating state

0,k ,s� to its backward state 
0,−k ,s� in the single-channel
mode becomes identically zero, i.e.

�0,− k,s
Ûimp
0,k,s� = 0. �16�

Thus, since the lowest backward-scattering matrix element
of T matrix vanishes, the decay of �g� in the single-channel
energy regime is extremely slow as a function of the ribbon
length as we have seen in Fig. 2. However, the back-
scattering amplitude in the second and much higher order
does not vanish. Hence the single-channel conduction is not
exactly perfect, such as carbon nanotubes,18 but nearly per-
fect in armchair nanoribbons.

The present results of nearly perfect single-channel trans-
port might be similar to those obtained in carbon nanotubes
by solving the Boltzmann transport equation, which is valid
for incoherent systems in the absence of intervalley
scattering.19 However, our results are for the coherent system
with intervalley scattering by armchair edge and their physi-
cal mechanism is different.

C. Symmetry consideration

Now we give a symmetry consideration to disordered
graphene and graphene nanoribbons. If the intervalley scat-

tering is absent, i.e., uX��r�=0, the Hamiltonian Ĥ0+ Ûimp be-
comes invariant under the transformation of S=−i��y

� �0�C, where C is the complex-conjugate operator. This op-
eration corresponds to the special time-reversal operation for
pseudospins within each valley and supports that the system
has the symplectic symmetry. However, in the presence of
intervalley scattering due to SRI, the invariance under S is
broken. In this case, the time-reversal symmetry across two
valleys described by the operator T= ��z � �x�C becomes rel-
evant, which indicates orthogonal universality class. Thus as
noted in Ref. 20, graphene with LRI belongs to symplectic
symmetry, but that with SRI belongs to orthogonal symme-
try.

However, in the disordered armchair ribbons, the special
time-reversal symmetry within each valley is broken even in
the case of LRI. This is because uX��r��0 as we have seen in
Sec. III B. Thus, irrespective of the range of impurities, the

armchair ribbons are classified into orthogonal universality
class. Actually, the application of magnetic field shows rather
strong magnetic field dependence on the inverse localization
length in the regime of the weak magnetic field for both LRI
and SRI cases �Fig. 3�. This is consistent with the behavior
of orthogonal universality class. Here, the inverse localiza-
tion length is evaluated by identifying exp�ln g�
=exp�−L /��. Since the disordered zigzag nanoribbons are
classified into unitary class for LRI but orthogonal class for
SRI,12 it should be noted that the universality crossover in
nanographene system can occur not only due to the range of
impurities but also due to the edge boundary conditions.

IV. SUMMARY

In this work, we have numerically investigated the elec-
tronic transport in disordered armchair nanoribbons in the
presence of short- and long-ranged impurities. In spite of the
lack of well-separated two valley structures, the single-
channel transport subjected to long-ranged impurities shows
nearly perfect transmission, where the backward-scattering
matrix elements in the lowest order vanish as a manifestation
of internal phase structures of the wave function. These re-
sults are in contrast with the mechanism of perfectly con-
ducting channel in disordered zigzag nanoribbons and metal-
lic nanotubes where the well separation between the two
nonequivalent Dirac points is essential to suppress the inter-
valley scattering. Within the Born approximation, this can-
cellation is satisfied even for SRI, which can be clearly seen
in Fig. 2�b�. The dependency of conductance on the Fermi
energy confirms our calculation about the difference between
single- and multichannel transport properties. The symmetry
consideration classifies the armchair nanoribbons into or-
thogonal class.
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